skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hao, Ning"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available July 3, 2026
  2. Free, publicly-accessible full text available April 17, 2026
  3. Free, publicly-accessible full text available April 25, 2026
  4. ABSTRACT In this short note, we address the identifiability issues inherent in the degree‐corrected stochastic block model (DCSBM). We provide a rigorous proof demonstrating that the parameters of the DCSBM are identifiable up to a scaling factor and a permutation of the community labels, under a mild condition. 
    more » « less
  5. Bipartite graphs are ubiquitous across various scientific and engineering fields. Simultaneously grouping the two types of nodes in a bipartite graph via biclustering represents a fundamental challenge in network analysis for such graphs. The latent block model (LBM) is a commonly used model-based tool for biclustering. However, the effectiveness of the LBM is often limited by the influence of row and column sums in the data matrix. To address this limitation, we introduce the degree-corrected latent block model (DC-LBM), which accounts for the varying degrees in row and column clusters, significantly enhancing performance on real-world data sets and simulated data. We develop an efficient variational expectation-maximization algorithm by creating closed-form solutions for parameter estimates in the M steps. Furthermore, we prove the label consistency and the rate of convergence of the variational estimator under the DC-LBM, allowing the expected graph density to approach zero as long as the average expected degrees of rows and columns approach infinity when the size of the graph increases. 
    more » « less
  6. Shen, Xiaotong (Ed.)